A REVIEW ON ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF CALCIUM CHANNEL BLOCKERS AND ANGIOTENSIN- CONVERTING ENZYME INHIBITORS IN BULK AND PHARMACEUTICAL FORMULATION

Gawade Sonba. C, G.K. Dyade, Dr.S.G.Jadhav.
S.V.P.M.s College of Pharmacy, Malegaon (BKII) Baramati, Pune-600117

ABSTRACT
A simple, economical and rapid by UV detector and PDA Detector was used for Estimation of Trandolapril and Verapamil in combination and other drugs in various Pharmaceutical formulation. Calcium channel blockers(CCBs) and angiotensin- converting enzyme (ACE) inhibitors has been developed and fully validated by High performance liquid Chromatographic Methods. Calcium channel blockers (CCBs) or Calcium antagonists are among the most widely used drugs in cardiovascular medicine and hypertension also in angina. CCBs promote vasodilator activity by reducing calcium influx into vascular smooth muscle cells by interfering with calcium channels in the cell membrane. Trandolapril is a potent nonsulfhydryl and dicarboxyl containing Angiotensin converting inhibitor (ACE). Trandolapril used to treatment of hypertension appears to result the inhibition of tissue ACE activity and to improve survival myocardial infarction thereby reduce angiotensin II formation. It includes drugs like Trandolapril, Norverapamil, Nifedipine, Verapamil. This Review enlists different method Developed, Validated and determination of Calcium channel blockers and angiotensin- converting enzyme inhibitors Like, RP-HPLC, LC-MS/MS and HPLC UV- Spectrophotometric method. This method was also validated for various validation terms indicates that precise, accurate, linearly, and limit of Detection and limit of Quantitation as per ICH guidelines.

Keywords: HPLC Chromatography, Calcium Channel blocker, angiotensin- converting enzyme (ACE) inhibitors, Hypertension, Validation etc.

INTRODUCTION
Trandolapril is a colorless and crystalline solid soluble in chloroform, methanol and dichloromethane, odourless powder which melts in the range of 125-130° C. Trandolapril is chemically (2S, 3aR, 7aS)-[[(S)-2-[[1-Ethoxycarbonyl 1-3-phenylpropyl] amino] propanoyl] octahydro- 1H-indole- 2- carboxylic acid. Molecular formula and molecular weight of the trandolapril drug are C₂₃H₃₄N₂O₅ and 430.537 grams/mol respectively. Monoester prodrug of a Trandolapril was hydrolysed by esterases to its active dicarboxyl containing metabolite, norverapamil. Verapamil is solid freely soluble in water, chloroform and methanol which melts range of 138-140 °C. Verapamil hydrochloride (VER) is Chemically, (5- [3,4- dimethoxyphenethyl] methylamino) -2- (3,4- dimethoxyphenyl)- 2-isopropylvaleronitrile hydrochloride), a slow calcium channel antagonist, inhibits the trans membrane influx of calcium ions into the heart and vascular smooth muscle cells. Verapamil is available in oral and intravenous dosage forms. Verapamil appears to be well absorbed orally, is highly protein bound, and is extensively metabolized by the liver to an active demethylated metabolite, norverapamil.

Amphoteric compounds like trandolapril is a potent nonsulfhydryl and dicarboxyl containing Angiotensin converting inhibitor(ACE). Trandolapril used to treatment of hypertension appears to result the inhibition of tissue ACE activity and to improve survival myocardial infarction thereby reduce angiotensin II formation, and treatment for congestive heartfailure, decreases the rate of aldosterone secretion, and increase plasma renin. Decreased aldosterone secretion leads to diuresis, natriuresis, and a small rate of change of serum potassium. Some undesirable effects shows commonly used to treatment of trandolapril includes,dizziness, cough, headache. Approximately 10%and 70% oral dose of trandolapril is bioavailable as trandolapril and trandolaprilat
respectively. The t1/2 of trandolapril is maximum 1 hours, and that of Trandolaprilat is, approximately, 75 hours[5, 6]. Calcium channel blockers (CCBs) are a structurally and functionally heterogeneous group of medications that are used widely to control blood pressure and manage symptoms of angina. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients[8]; calcium channel blocking agents useful in the treatment of vasospastic angina, chronic stable angina, and supraventricular tachyarrhythmias[7].

Advantages of CCBs are:

- Do not compromise haemodynamic: No impairment of physical work capacity
- No sedation or other CNS effect, cerebral perfusion is maintained: compatible with intense mental activity

Advantages of ACE Inhibitors are:

- The therapy of hypertension and heart failure.
- Trandolapril is associated with a low rate of transient serum amino transferase elevations, but has yet to be linked to instances of acute liver injury.
- This prevents the potent vasoconstrictive action of angiotensin II and result in vasodilation

Reported methods are categorized depending on the following considerations:

Analyzed by Single component with other class drugs for combination with Calcium channel blocker with angiotensin-converting enzyme (ACE) inhibitors by UV-Spectroscopy methods and Chromatographic method.

Table 1: Analysis of Trandolapril and Verapamil combination with other drugs by RP-HPLC Method and UV-Spectrophotometric Methods

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Drug</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Development and Validation of Trandolapril in Tablets</td>
<td>RP-HPLC Method with UV-Detector</td>
<td>Detection wavelength: Trandolapril: 210nm Stationary phase: ODS INERTSIL C18, (250×4.6mm, 5µm) Linearity range: Trandolapril: 6 -14 µg/ml Mobile Phase: phosphate buffer (pH3.0) and acetonitrile (1: 1) Flow rate: 1.0 ml/min Retention time: 5.8 min Co-relation co-efficient: 0.9995 % Recovery range: 100.38% to 99.18% LOD: 0.36 µg/mL, LOQ: 1.21 µg/mL</td>
</tr>
<tr>
<td>2.</td>
<td>Quantification of Trandolapril</td>
<td>UV- Spectrometric Detection</td>
<td>Detection wavelength: Trandolapril: 220nm Stationary phase: LiChroCART -RP C18 column (250x4.0, 5 µm) Linearity range: Trandolapril: 2.5-17.5 µg/mL Mobile Phase: acetonitrile: methanol: phosphate buffer (0.025mM) pH3.0 (40:35:25) Flow rate: 1.0 ml/min Retention time: 2.750 ±0.008 min Co-relation co-efficient: 0.999 % Recovery range: 100.38% to 99.18% LOD: 0.099 µg/mL, LOQ: 0.300834 µg/mL</td>
</tr>
</tbody>
</table>
| 3. Estimation of Verapamil and Trandolapril in Pharmaceutical formulations tablets | Liquid Chromatographic (RP-LC) Method | Detection wavelength:
Verapamil: 202 nm
Trandolapril: 206 nm
Stationary phase: X-Terra RP-18 column (250 × 4.60 mm × 5 µm)
Linearity range:
Verapamil: 0.50-18.00 µg/mL
Trandolapril: 0.05-1.00 µg/mL
Mobile Phase: MeOH and water (50-65) (v/v)
Flow rate: 1.2 ml/min
Injected volume: 20 µL
Retention time:
Verapamil: 2.964 min
Trandolapril: 5.497 min
Co-relation co-efficient:
Verapamil: 0.9999
Trandolapril: 0.9999
% Recovery range:
Verapamil: 99.99 %, Trandolapril: 101.60 %
Verapamil: LOD: 0.008 µg/mL, LOQ: 0.025 µg/ml
Trandolapril: LOD: 0.018 µg/mL, LOQ: 0.050 µg/ml |
|---|---|---|
| 4. Determination of Trandolapril in bulk and formulations | RP-HPLC Method (215 nm) | Detection wavelength: Trandolapril:
Stationary phase: Hypersil gold C18(100mm, 4.6mm-ID, 5 µm)
Linearity range:
Trandolapril: 25.0-150 µg/mL
Mobile Phase: buffer and acetonitrile (50:50) v/v
Flow rate: 1.0 ml/min
Retention time: 6 min
Co-relation co-efficient: 0.9999
% Recovery range: 99.78% to 100.23
LOD: 1.149 µg/ml, LOQ: 3.832 µg/ml |
| 5. Validation and Determination of Trandolapril in bulk and formulations | RP-HPLC Method (PDA) | Detection wavelength: Trandolapril:
Stationary phase: Hypersil-Gold C18 column (250 mm × 4.6 mm, 5 µm)
Linearity range:
Trandolapril: 1-24 µg/mL
Mobile Phase: acetonitrile and Buffer (Triethylamine, pH 3.0 ± 0.1) (50:50) v/v
Flow rate: 1.0 ml/min
Retention time: 4.6 min
Co-relation co-efficient: 0.9999
% Recovery range: 99 %
LOD: 0.0566 µg/ml, LOQ: 0.1715 µg/ml |
6. Simultaneous estimation of Calcium channel blockers in API and dosage formulations and Human serum

RP-HPLC Method (UV-Detector)

- **Detection wavelength:**
 - Trandolapril: 238 nm
 - Verapamil: 10-600 µg/mL
- **Stationary phase:** Nucleosil® C18 (10 µm, 25 × 0.46 cm) column
- **Linearity range:**
 - Verapamil: 10-600 µg/mL
 - Other Drugs: 5-100 µg/mL
- **Mobile Phase:** methanol: water: acetonitrile (55:35:10 v/v/v; pH 2.65 with OPA
- **Flow rate:** 1.0 ml/min
- **Injected volume:** 20 µL
- **Run time:** 10 min
- **Co-relation co-efficient:** 0.9998

7. Determination and Comparison Between Cyano and C-18 Columns for Separation of Trandolapril and Verapamil

HPLC-UV Method /LC-MS/MS

- **Detection wavelength:**
 - Verapamil: 215nm
 - Trandolapril: 215nm
- **Stationary phase:**
 - a) Inertsil C-18, (250×4.6 mm, 5 µ)
 - b) Inertsil C-18, (150×4.6 mm, 5 µ)
 - c) Cyano (150×4.6 mm, 5 µ)
- **Linearity range:**
 - Verapamil: 30–140 µg/mL−1
 - Trandolapril: 0.5–10 µg/mL−1
- **Mobile Phase:**
 - For C 18 Column: acetonitrile: potassium di-hydrogen ortho-phosphate buffer pH 6 (50:50)v/v
- **Flow rate:** 1.0 ml/min
- **Retention time:**
 - Column C18 150 mm:
 - TRP-3.1, VRP-4.2
 - Column C18 250 mm:
 - TRP -3.3, VRP- 8.8
 - Cyano Column 150 mm:
 - TRP - 3.4, VRP- 5.2
- **Co-relation co-efficient:**
 - Column C18 150 mm: TRP-0.9999, VRP-0.9999
 - Column C18 250 mm: TRP -0.9999, VRP-0.9999
 - Cyano 150 mm: TRP - 0.9998, VRP- 0.9998
- **% Recovery range:**
 - C18 150 mm: TRP-100.29%, VRP-100.08%
 - C18 250 mm: TRP- 100.23%, VRP-100.33%
 - Cyano 150 mm: TRP- 100.066%, VRP-100.089%
- **LOD:** C18 150mm/C18 250mm/ Cyano 150 mm
 - TRP -0.16 µg/ml, VRP- 10 µg/ml.
- **LOQ:** C18 150mm/C18 250mm/ Cyano 150 mm
 - TRP -0.16 µg/ml, VRP- 10 µg/ml.
<table>
<thead>
<tr>
<th>No.</th>
<th>Method Description</th>
<th>Detection wavelength</th>
<th>Stationary phase</th>
<th>Linearity range</th>
<th>Mobile Phase</th>
<th>Flow rate</th>
<th>Injected volume</th>
<th>Retention time</th>
<th>Co-relation co-efficient</th>
<th>% Recovery range</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Verapamil and Norverapamil in Human Plasma</td>
<td>TRP - 0.5 µg/ml, VRP - 30 µg/ml.</td>
<td>Detection wavelength: Verapamil: 201 nm Stationary phase: Cyanopropylsilane column (Dupont, Wilmington, DE), 15 cm x 4.6 mm Linearity range: Verapamil: 20-100 µg/mL Mobile Phase: acetonitrile and buffer (65:35%) v/v Flow rate: 3.0 ml/min Injected volume: 20 µL Retention time: Verapamil: 3.92 min Co-relation co-efficient: Verapamil: 0.9935 % Recovery range: Verapamil: 99.99% Verapamil: LOD: 2 ng/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Estimation of Trandolapril Impurity in API</td>
<td>Detection wavelength: Trandolapril: 210 nm Stationary phase: Acquity BEH C18, (100mm x 2.1mm) 1.7 µm Linearity range: Trandolapril: 0.05 to 1.0 % Mobile Phase: Solution A : 0.1% TFA in water, Solution B : 0.1% TFA in Acetonitrile. Solution A : Solution B (20:80 %) Flow rate: 0.4 ml/min Retention time: 5.56 min Co-relation co-efficient: 0.9997 % Recovery range: 100 to 101.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Estimation of Combination of Trandolapril and Verapamil in Bulk and Pharmaceutical formulation</td>
<td>Detection wavelength: Verapamil: 240 nm, Trandolapril: 240 nm Stationary phase: Hypersil BDS C18 (100 mm x 4.6 mm, 5µ) Linearity range: Verapamil: 60-360 µg/mL, Trandolapril: 1-6 µg/mL Mobile Phase: phosphate buffer and acetonitrile (60:40 v/v) Flow rate: 0.8 ml/min Retention time: Verapamil: 3.481 min, Trandolapril: 2.905 min Co-relation co-efficient: Verapamil: 0.9998, Trandolapril: 0.9999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
<td>Methodology</td>
<td>Specifics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11 | Estimation of Trandolapril in Tablets dosage form | RP-HPLC Method (PDA detector) | % Recovery range: Verapamil: 99.65 %, Trandolapril: 99.64 %
Verapamil: LOD: 4.923 µg/mL, LOQ: 14.918 µg/ml
Trandolapril: LOD: 0.166 µg/mL, LOQ: 0.503 µg/ml |
Stationary phase: symmetrical C18 column (4.6 x 150mm, 3.5µ)
Linearity range: Verapamil: 10-65 µg/mL, Trandolapril: 2-15 µg/mL
Mobile Phase: Phosphate buffer (pH2.2):acetonitrile (35:65) v/v
Flow rate: 0.6ml/ min
Retention time: Verapamil: 2.5 min, Trandolapril: 3.8 min
Co-relation co-efficient: Verapamil: 0.999, Trandolapril: 0.998
% Recovery range: Verapamil: 98.44 %, Trandolapril: 98.01 %
Verapamil: LOD: 0.018µg/mL, LOQ: 0.06µg/ml
Trandolapril: LOD: 0.05 µg/mL, LOQ: 0.19 µg/ml |
| 13 | Nifedipine and Verapamil in Rat Plasma | HPLC Method | Detection wavelength: Verapamil: 235 nm, Nifedipine: 235 nm
Stationary phase: Microsorb-MV C18, (25 cm x 4.6 mm) i.d., 5 µm
Linearity range: |
| 14 | Trandolapril and Verapamil in Human Plasma | Liquid Chromatography Tandem mass Spectrometry | Stationary phase: waters symmetry-RP18 (150 mm×4.0 mm), 5μ Stationarity range: Verapamil: 1-2000 μg/Ml, Trandolapril: 5-1500 μg/mL Mobile Phase: Ammonium formate (10 mmol) and acetonitrile (70:30 %) V/V Flow rate: 0.9 ml/ min Co-relation co-efficient: Verapamil: 0.999, Trandolapril: 0.998 % Recovery range: Verapamil: 98.37%, Trandolapril: 97.60% | 1

| 15 | Trandolapril and Verapamil Hydrochloride in Capsule Formulation | Liquid Chromatographic Method | Detection wavelength: Verapamil HCl: 220 nm, Trandolapril: 220 nm Stationary phase: LiChrosorb RP-18 column (250 × 4 mm, 10 μm) Linearity range: Verapamil HCl: 4–20 μg/mL Trandolapril: 4–20 μg/mL Mobile Phase: Acetonitrile: methanol: buffer (pH2.7) (40:40:20) v/v/v Flow rate: 1.0 ml/ min Co-relation co-efficient: Verapamil HCl: 0.9996, Trandolapril: 0.9995 % Recovery range: Verapamil HCl: 98.13%, Trandolapril: 99.94% |
| 16 | Determination of Verapamil in Pharmaceutical formulation | HPLC Method | Detection wavelength:
Verapamil: 280 nm
Stationary phase:
C18 column (30 cm x 4 mm), 10 µm
Linearity range:
Verapamil: 0-274 µg/mL
Mobile Phase:
Methanol: water: acetic acid: triethylamine (55:44:1:0.1)
Flow rate: 1.2 ml/min
Injected volume: 20 µL
Co-relation co-efficient:
Verapamil: 0.9999
% Recovery range:
Verapamil: 100.0% (80 mg Tablets), 101.0% (120 mg Tablets) |
| 17 | Determination of Verapamil Hydrochloride and its Related compounds in raw material | HPLC Method | Detection wavelength:
Verapamil: 278 nm
Stationary phase:
Spherisorb ODS-2 column, (150 x 4.6 mm), 3 µm
Linearity range:
Verapamil: 50% - 150%
Mobile Phase:
Buffer-Acetonitrile: 2-aminoheptane (55:45:0.5) v/v/v
Flow rate: 0.9 ml/min
Retention time:
Verapamil: 5.78 min
Co-relation co-efficient:
Verapamil: 0.994
% Recovery range:
Verapamil: 99.0-100.5% |
| 18 | Comparative pharmacokinetics of trandolapril and its active metabolite, and verapamil in human plasma | HPLC Method | Detection wavelength:
Verapamil: nm,
Trandolapril: nm
Stationary phase:
Phenomenex C18 (3 µm, 110 A°, 100 x 1 mm)
Linearity range:
Verapamil: 1.50–500 ng.mL−1
Trandolapril: 1.00–500 ng.mL−1
Retention time:
Verapamil: 5.51 min
Nifedipine: 6.61 min
Mobile Phase:
phase A: 2% acetic acid (v/v)
phase B: 90% methanol and 2% acetic acid (v/v)
Run Time: 10 min
Flow rate: 50 µL/min, gradient (30% B from 0 to 1 min, 100% B from 1 to 3 min, 100% B from 3 to 8 min, 30% B from 8 to 9 min and maintained at 30% B till 10 min. |
CONCLUSION:
This Review represents the Reported Spectrophotometric and Chromatographic Methods Developed and Validated for determination of Calcium channel blocker and angiotensin-converting enzyme (ACE) inhibitors in different Pharmaceuticals formulations. Here Calcium channel blocker and angiotensin-converting enzyme (ACE) inhibitors shows the simple, accurate, precise method development and validate of the different drug formulations. The RP-HPLC, and LC-MS/MS, UV-Spectrophotometric method etc.

REFERENCES:
10. Sunil Kumar Dubey, Swapnil Deshpande, Sandeep Kumar, Prashant Raut, Akash Kumar Jain, Rajeev J Mudakavi,“A High performance liquid Chromatographic method for quantification of Trandolapril using UV Spectrometric method etc.
14. A. Hemda, Ragaa Magdy, Maha Farouk, “Comparison Between Cyano and C-18 Columns for Separation of Trandolapril and Verapamil with ESI-Q-ToF-MS Characterization of Acidic and Basic Degradation Products: Stability Indicating Assay Methods” Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Region (2018)

24. Ragaa Magdy, Ahmed H. El-Khatib, Ahmed Hemdan, Omar Abd Elaziz, Maha Farouk, Michael W. Linscheid, “Comparative pharmacokinetics of trandolapril, its active metabolite, and verapamil in human plasma of Egyptian population using HPLC–MS/MS” : m.linscheid@chemie.hu-berlin.de. 2093 7575, Fax: 0049 (0)30 2093 6985.