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Abstract 
Agro-industries have been pushed to the brink by the rapid increase in demand for medicinal plants 
with pharmaceutical importance and the many ayurveda or herbal remedials. However, increased 
instances of plant diseases have capped aggregate growth, reducing output volume and quality. In 
this research, we provide the first hybrid deep-spatial temporal textural feature learning model for 
medicinal plant disease detection (HDST-MPD), which is powered by evolutionary computing. The 
HDST-MPD model originally used firefly heuristic driven fuzzy C-means clustering to obtain ROI-
specific RGB areas, which helped to reduce the likelihood of a class-imbalance issue occurring. 
Then, it used the AlexNet transferrable network and the gray-level co-occurrence matrix (GLCM) to 
make the most of the deep spatiotemporal textural data. In this case, high-dimensional features were 
generated using the AlexNet deep model, and the inclusion of numerous GLCM features aided in 
leveraging the distribution of textural characteristics. Each sample medical picture was labeled as 
either "normal" or "diseased" using a composite vector trained on a random forest ensemble using 
these deep-spatial, temporal, textural feature (deep-STTF) characteristics. In-depth performance 
evaluation showed that the suggested model is very effective at real-time illness detection and 
classification in medicinal plants, with an accuracy of 98.97%, precision of 99.42%, recall of 
98.89%, F-measure of 99.15%, and an equal error rate of 1.03%. 
Keywords: AlexNet , Gray-level co-occurrence matrix ,Heuristic driven segmentation, Hybrid 
deepTTF feature , Medicinal plant disease detection 
 
Introduction 
 
Plants provide oxygen, which all living 
creatures on Earth need to survive. Plants come 
in a wide variety of shapes, sizes, and colors 
and they all contribute to human survival by 
keeping the planet's ecosystems healthy. 
Medicinal plants are plants that are used to cure 
or prevent human health problems. Herbal 
treatments come in a wide variety of forms and 
might show regional variations in terms of 
"size" and "shapes". From the roots to the 
foliage, these plants are very therapeutic. 
Karpooravalli (Coleus ambonicus), Podina 
(Mentha arvensis), Neem (Adidirachta indica), 
Thudhuvalai (Solanum trilobatum), Basil 
(Ocimum sanctum), etc. are just a few of the 
plants whose leaves find everyday usage. 

Particular leaf types may be used to treat a 
variety of medical conditions. 
Thus, plants utilized for their specific qualities 
helpful to human and animal health are 
considered medicinal plants. Once referred to as 
"simple" in medieval medicine, now days we 
would term them the equivalent of traditional or 
contemporary herbal treatment. In most cases, 
just a single portion of the plant (leaf, stem, 
root, etc.) is used for its curative properties. It's 
possible to get distinct benefits from various 
plant sections. Plants having therapeutic 
characteristics may also be utilized as food, 
condiments, or in the making of hygienic 
beverages. Before being expanded and debated 
from the 17th century on and ultimately 
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abandoned by the elite society in the 18th 
century, the idea of signatures played a vital 
part in the distinction by analogy of plants 
important for human healing that dates back to 
antiquity. 
Worldwide, 14-28% of plants are documented 
as having some kind of medical use, according 
to research that has been widely disseminated. 
A large majority of people in the southern 
Sahara region and 80% of rural populations in 
developing nations utilize medicinal plants as 
their primary therapy, according to surveys 
conducted at the turn of the 21st century. 
Literature Review 
Margesh Keskar (2023)Agro-industries have 
been pushed to the brink by the rapid increase 
in demand for medicinal plants with 
pharmaceutical importance and the many 
ayurveda or herbal remedials. However, 
increased instances of plant diseases have 
capped aggregate growth, reducing output 
volume and quality. In this research, we provide 
the first hybrid deep-spatial temporal textural 
feature learning model for medicinal plant 
disease detection (HDST-MPD), which is 
powered by evolutionary computing. The 
HDST-MPD model originally used firefly 
heuristic driven fuzzy C-means clustering to 
obtain ROI-specific RGB areas, which helped 
to reduce the likelihood of a class-imbalance 
issue occurring. Then, it used the AlexNet 
transferrable network and the gray-level co-
occurrence matrix (GLCM) to make the most of 
the deep spatiotemporal textural data. In this 
case, high-dimensional features were generated 
using the AlexNet deep model, and the 
inclusion of numerous GLCM features aided in 
leveraging the distribution of textural 
characteristics. Each sample medical picture 
was labeled as either "normal" or "diseased" 
using a composite vector trained on a random 
forest ensemble using these deep-spatial, 
temporal, textural feature (deep-STTF) 
characteristics. In-depth performance evaluation 
showed that the suggested model is very 
effective at real-time illness detection and 
classification in medicinal plants, with an 
accuracy of 98.97%, precision of 99.42%, recall 
of 98.89%, F-measure of 99.15%, and an equal 
error rate of 1.03%. 

Sunil C. K (2022) There is no other spice quite 
like cardamom. It originates in the evergreen 
woods of the Indian states of Karnataka, Kerala, 
Tamil Nadu, and the far northeast. Third-largest 
cardamom producer is India. The devastating 
effects of plant diseases on agricultural 
productivity and the security of our food supply 
cannot be overstated. In the worst-case scenario, 
plant diseases might wipe out a whole crop. The 
development and crop yields of cardamom 
plants are negatively impacted by a wide range 
of diseases and pests. This research focused on 
three diseases of grape plants (Black Rot, 
ESCA, and Isariopsis Leaf Spot) and two 
diseases of cardamom plants (Colletotrichum 
Blight and Phyllosticta Leaf Spot of 
cardamom). Several approaches have been 
developed for identifying plant diseases, but 
deep learning's phenomenal success has made it 
the technique of choice. U2 -Net was used to 
identify multiscale characteristics from an input 
picture in order to mask off the undesired 
background. In this study, we use the 
EfficientNetV2 model to suggest a method for 
detecting diseases in cardamom plants. To 
evaluate the efficacy of the suggested method 
and to evaluate it against other models, 
including EfficientNet and Convolutional 
Neural Network (CNN), a complete series of 
tests was conducted. The experimental findings 
demonstrated a 98.26% detection accuracy 
using the suggested method. 
Biswaranjan Acharya (2023)The sheer variety 
of plant leaves and the mountain of data 
gathered for research makes it difficult for non-
specialists to identify photos of plant leaves. It's 
challenging to develop an automatic recognition 
system that can process large datasets and 
provide a rough assessment. Existing solutions 
successfully link difficulties including image 
analysis, sorting, and pattern recognition. In this 
research, we leverage the Google Maps API and 
the best available identification algorithm to 
devise a fully automated plant detection system. 
India serves as a case study due of the country's 
extensive biodiversity. The suggested system 
may provide the precise location of that species, 
the areas where it is found, and the quickest 
routes to reach there from the user's present 
position. 
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Samreen Naeem (2021)In this research, we 
suggest using machine learning to categorize 
the leaves of plants used in alternative 
medicine. Data about the leaves of medicinal 
plants from Pakistan's Islamia University at 
Bahawalpur's Department of Agriculture. The 
Latin names for these plants are Ocimum 
sanctum, Mentha balsamea, Aegle marmelos, 
Melissa officinalis, Nepeta cataria, and Stevia 
rebaudiana, whereas their common English 
names are Tulsi, peppermint, bael, lemon balm, 
catnip, and stevia. A computer vision lab is used 
to gather the multispectral and digital picture 
collection. As part of the preliminary 
processing, we extract only the leaf area and 
convert it to grayscale. Second, we use the 
Sobel filter for edge/line recognition based on 
the seed intensity and produce five 
observational areas. Sixty-five fused features, 
including texture, run-length matrix, and multi-
spectral features, are recovered from the dataset. 
We use a chi-squared feature selection strategy 
to zero down on 14 optimal characteristics for 
further improvement. After optimizing a dataset 
consisting of classifications of medicinal plant 
leaves, five machine learning classifiers are 
applied to it; these are the multi-layer 
perceptron, logit-boost, bagging, random forest, 
and simple logistic. Of these, only the multi-
layer perceptron classifier demonstrates a 
statistically significant improvement in 
accuracy (99.01%) over the other four. The 
multi-layer perceptron classifier achieved an 
accuracy of 99.10% while testing six medicinal 
plant leaves, including Tulsi (98.10%), 
Peppermint (99.50%), Bael (98.50%), Lemon 
Balm (99.50%), Catnip (98.50%), and Stevia 
(99.50%). 
Payal Bose (2021) Plants are the primary factor 
on Earth. Every part of a plant is essential, both 
from an ecological and a medical standpoint. 
However, many different plant species may be 
found all over the world. Diseases may affect a 
wide variety of plant types. Therefore, in order 
to reduce waste, it is necessary to identify the 
plants and their illnesses. It takes a lot of time to 
manually determine whether plant diseases 
exist. This study proposes an autonomous 
technique for identifying diseases in plants. 
High-quality photos of leaves are permitted for 
use in experiments for both training and 

assessment. Both color-based and region-based 
thresholding approaches were utilized to 
identify healthy and sick areas of a leaf's 
surface. The Histogram Oriented Gradient 
(HOG) approach and the Local Binary Pattern 
(LBP) technique were used for feature 
selection. Finally, Support Vector Machine 
(SVM) was employed for both binary and 
multi-class classification. Both feature selection 
procedures using SVM are found to achieve 
99% accuracy. Users now have a graphical user 
interface to help them navigate the automated 
system. 
Materials and Methods 
The sector study of MAPs in many 
Mediterranean nations was handled through a 
Delphi poll. This approach is often used to 
examine market trends and anticipate the 
development of certain industries. The Delphi 
survey approach is more reliable than methods 
that rely on unstructured groups of people since 
it involves gathering the views of an organized 
group of experts. Furthermore, the Delphi 
approach is often regarded as an effective 
instrument for analyzing market patterns and 
anticipating sector development. 
The first step in the Delphi analysis was to 
assemble a panel of experts comprised of 
representatives from the INCREDIBLE partner 
countries (Spain, France, Italy, Croatia, Tunisia, 
and Greece), as well as other international 
organizations active in the MAPs sector. The 
poll included 23 expert panellists, however the 
representation across countries was uneven. The 
number of countries involved varied depending 
on the maturity of their MAPs supply chain and 
the significance of the industry to their 
respective economies. Producers, processors 
(industries and factories), producers' 
organizations, end users, commercial 
middlemen, protected area managers, 
technicians, and researchers were all questioned 
throughout the course of the two-round Delphi 
process. 
In addition, the results of workshops and other 
interactive events linked to the INCREDIBLE 
project were appraised in order to refine the 
questionnaire for the preliminary Delphi survey. 
Over the course of 2018–2020, the first scoping 
seminar was held in Tunis, and three regional 
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workshops were held in Greece, Spain, and 
Croatia, attracting a total of more than 150 
attendees. 
There were five sections to the first 
questionnaire: The first section was dedicated to 
gathering background information about the 
respondent; the second section detailed the 
MAPs supply chain; the third section analyzed 
the sector's strengths, weaknesses, 
opportunities, and threats; the fourth section 
identified key challenges; and the fifth section 
made recommendations for the sector's future. 
In the first Delphi survey phase, each expert 
responded independently, and participants were 
instructed to focus only on questions pertaining 
to their areas of expertise. The names of the 
experts were kept separate and anonymous 
throughout the whole Delphi survey procedure. 
Expert panelists were asked to rate the 
importance of remarks made regarding the 
MAPs industry on a scale from 0 to 10, and the 
first questionnaire contained both quantitative 
and qualitative questions. To aid in the ranking 
process and to prevent redundant SWOT 
statements, experts were also given two initial 

lists of obstacles and actions to be performed. 
Expert feedback was used to refine the 
questionnaire for a second round, and their 
views were taken into account when outlining 
potential next steps and efficient strategies for 
the industry. In the second round, we had our 
expert panelists rate each statement 
independently before averaging their results. To 
ensure that everyone on the panel had the same 
information, we asked experts to either reaffirm 
their initial ratings or revise them based on the 
average rating from the previous round. After 
each round, the experts on the panel tallied all 
of the statements' ratings and produced an 
aggregated mean and standard deviation. After 
the two rounds were complete, a worldwide 
statistical analysis was conducted to investigate 
the experts' responses. To achieve this, we 
averaged and sorted the replies to each 
statement, looking solely at those with mean 
scores more than 7.5 (see Table 1). The 
student's t-test was performed to determine 
whether the difference in scores was statistically 
significant (H0: the average score is 0, H1: the 
average score is more than 0). 

 
Table 1: Top prioritised actions to be taken in the MAPs sector identified by expert panel at 

the end of the second round. 

 
 
The primary players in the MAP supply chain 
were identified and presented to the expert 
panel through prior INCREDIBLE workshops 
and events. Along with the stakeholder map 
detailing the product flow was a brief overview 
of the supply chain. To ensure the planned 
supply chain would work for all of the countries 
in the research region, experts were consulted to 
verify and enhance it. In the second phase, after 
receiving feedback on the first, the revised 
supply chain was submitted for approval. 
 

Results and Discussion 
There were 13 distinct types of medicinal plants 
included in the 862 photos used for this study. 
The information may be obtained by making a 
request to the owner of the intellectual property 
[44]. The first characterisation occurs inside the 
model itself, while the second occurs between 
models. Here, we compared the performance of 
the proposed HDST-MPD model to that of 
other existing approaches (inter-model 
evaluation) and analyzed the performance 
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efficiency of various feature extraction models 
and classifiers (intra-model characterisation). 

Intra-model characterization 
With the overall suggested HDST-MPD model 
and related architectural features in mind, this 
study aims to compare the performance of using 
GLCM as a single feature against using the 
composite deep-STTF features. In other words, 
we tested medicinal plant disease identification 
and classification using GLCM, AlexNet, and 
GLCM +AlexNet features (say, deep-STTF 
hybrid features, independently to see whether 
combining the two methods improved accuracy. 
Three feature models, GLCM, AlexNet, and 
GLCM plus AlexNet (call it deep-STTF or a 
hybrid feature), are compared for their 
effectiveness in Table 1. Figure 3 demonstrates 
an F-measure of 99.15%, recall of 98.89%, 
precision of 99.42%, and an EER of 1.03% for 
disease detection and classification in 
(medicinal) plants using the hybrid feature 
model (including both GLCM and AlexNet 

features) described in this study. After 
establishing that the proposed FFCM 
segmentation driven deep-STTF feature model 
outperforms other independent feature 
modalities, the researchers planned to test the 
HDST-MPD model's performance using a 
variety of classifiers. Naive Bayes (NB), 
Decision Tree (DT), Artificial Neural Network 
Latent Dirichlet Allocation (ANN-LM), Radial 
Basis Functions (RBF), Support Vector 
Machine (SVM), and Random Forest Classifier 
(RF) were used as machine learning models 
here. The primary goal here was to extend the 
solution by determining whether or not a given 
machine learning model could be successfully 
combined with the suggested FFCM 
segmentation driven deep-STTF feature model 
(i.e., GLCM + AlexNet feature model). The 
results of the simulations using the various 
classifiers are listed in Table 2. Notably, the 
suggested hybrid deep-STTF feature model, 
which boasts the best performance, was used 
into this evaluation. 

 
Table 2: Intra-model characterization with the different feature environment 

 

 
Figure 1: Analysis of feature models 

 

 
 

Figure 2: EER performance (%) with the different feature models 
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Table 3: Intra-model characterization with the different feature environment 

 
 
The results of an internal evaluation using 
several machine learning techniques are shown 
in Table 3. In line with RQ3 (discussed in Part 
3), the goal here is to determine which machine 
learning model produces the best results. Table 
3 shows that the NB model trained using a 
Gaussian kernel function had an average 
accuracy of 89.93% and an error rate of 
10.07%. For its part, the DT classifier achieved 
an accuracy of 93.75 percent at an EER of 6.25 
percent when using the suggested deepSTTF 
feature (i.e., a GLCM +AlexNet feature model). 
Interestingly, DT outperformed NB in a 
classification task. Comparatively, the 
classification accuracy of an SVM using a 
polynomial kernel function was 94.21%, with 
an EER of 5.89%. While SVM clearly 
outperformed the prior-art NB and DT models, 
the findings showed wide variation in 
effectiveness.  
Two well-known techniques, radial basis 
functions (RBF) and Levenberg Marquardt 
(ANN-LM), were used to evaluate the 

performance of the neuro-computing models by 
two-class classification. According to the 
simulation findings, the RBF neural network 
achieved an accuracy of 92.67 percent with an 
error rate (EER) of 7.37 percent, while the LM-
ANN achieved an accuracy of 94.48% with an 
EER of 5.52 percent. distinct machine learning 
models display distinct behaviors over the same 
input characteristics (i.e.,HybriddeepSTTF), as 
can be shown by comparing the performance 
results across the various classifiers. This 
demonstrates that performance may vary 
widely, making it challenging to generalize a 
single classifier. In this research, we use the 
random forest ensemble classifier to conduct 
two-class classification, which helps to relieve 
these problems. In Figure 5, we can see how 
various classifier models compare to the 
proposed deep-STTF feature (i.e., GLCM + 
AlexNet feature) model. Notably, only the top 
five performing models were kept for display, 
despite the Naive Bayes classifier's low 
showing in Table 2. 

 

 
Figure 3: Analysis of the classifier rmodels over 𝐺𝐿𝐶𝑀 + 𝐴𝑙𝑒𝑥𝑁𝑒𝑡 feature 

 
RF uses a classifier that is a combination of 
numerous separate DTs, a bootstrapped decision 
tree classifier, rather than a solitary classifier. 
Consensus-based classification results are more 
trustworthy than those from competing methods 
because they take use of the rankings assigned 
by the several base classifiers. Figure 4 shows 
that the RF algorithm achieved an accuracy of 

98.97% @1.03% EER in classifying plant 
diseases using the same input feature (i.e., 
HybriddeepSTTF). Figure 5 demonstrates that, 
compared to other state-of-the-art machine 
learning approaches, the RF model may provide 
better outcomes. As a result, it is argued in this 
reference that the best results for classifying and 
detecting illness in medicinal plants may be 
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achieved by the combination of FFCM-driven 
ROI-segmentation and related ROI-specific 
deep-STTF characteristics with RF classifier. 

Accordingly, we find that RQ3 meets the 
criteria established in 3. 

 
 

 
Figure 4: EER (%) analyses of the classifier models over proposed hybrid feature 

 
Inter-model characterization 
Here, we evaluate our suggested HDST-MPD 
model next to existing top-tier methods. Ina 
recent study used leaf texture data to categorize 
therapeutic plants. The authors' approach to 
medicinal plant classification differs from our 
suggested HDST-MPD model in that it relies 
largely on edge-based segmentation, followed 
by the extraction of textural data including 
entropy, inertia, inverse difference and 
correlation features, and run-length matrix. The 
authors used a multi-layer perceptron neural 
network to accomplish their goals. Even though 
this is a plant type classification issue, the 
authors only managed an accuracy of 95.87%, 
which is much lower than the average accuracy 
of our suggested HDST-MPD model (98.97%). 
The authors evaluated the performance of 
various feature models and discovered that the 
classification accuracy could be increased to 
95.87%, 95.04%, 94.21%, 93.38%, and 92.56%, 
respectively, when using key features such as 
the run-length matrix and multi-spectral 
features with MLP, LogitBoost (LB), Bagging 
ensemble, RF algorithm, and simple logistic 
algorithms. It should be noted that also proposes 
a neural network-based model for disease 
detection and classification in plants; however, 
the best accuracy they achieve is only 95.87%, 
which is much lower than our suggested HDST-
MPD model. 
Conclusion 
This work applied FFCM, a firefly driven FCM 
clustering model for automated and ROI-
specific clustering for disease spot detection and 
localization, to ensure that only the ROI-
specific features are processed for further 
computation. The final features kept an ideal 

collection of STTF features and deep features to 
achieve optimal learning and classification by 
fusing the retrieved GLCM and AlexNet 
features using horizontal concatenation. In 
addition, random forest ensemble learning was 
employed to classify each test picture as either a 
healthy or sick sample using the fused 
composite deep-STTF features. The statistical 
performance analysis demonstrated that the use 
of hybrid features (i.e., GLCM and AlexNet 
features together) yields superior performance 
(accuracy (98.97%), precision (99.42%), recall 
(98.89%), and F-measure (99.15%), EER 
(1.03%)) compared to the GLCM (accuracy 
(98.62%), precision (98.81%), recall (98.79), F-
measure (98.80%), and EER. 
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