Renal failure (A review)
Ali Alidadi 1,2, Elham Taheri Boroujeni3

1 Nephrology Department, Faculty of Medicine, Zahedan University of medical sciences, Zahedan, Iran
2 Clinical Immunology Research center (CIRC) at Zahedan University of medical sciences (ZAUMS), Zahedan, Iran
3 Student Research committee, Faculty of Medicine, Zahedan University of medical sciences, Zahedan, Iran

ABSTRACT
Advanced Renal Failure or ESRD is one of the most serious and growing issues in the community necessitating the delivery of appropriate services to patients suffering from the disease. Carrying out medical interventions in the early stages of chronic renal failure can delay disease progression and reduce mortality. Results of the Literature review were exported to Endnote. Prior to the formal screening process, a calibration exercise was undertaken to pilot and refine the screening. Formal screening process of titles and abstracts were conducted by two researchers according to the eligibility criteria, and consensus method was used for solving controversies among the two researchers. Chronic Kidney Disease (CKD) is a progressive disease of kidney failure in a period of months to years. Renal failure refers to temporary or permanent kidney damage those results in the loss of normal kidney function. Reduced function of some nephrons causes hypertrophy of other remaining nephrons. The plasma flow in one nephron and the pressure inside the glomeruli increases due to the vasodilatation of the aphrodisiacs. Patients with CKD usually do not show symptoms until GFR decreases down to 15 ml / min. Uremia is a syndrome that affects each organ. Uremic syndrome is probably the result of a series of factors, including retention of molecules, major hormonal deficiencies and metabolic factors, more than the effect of a single uremic poison. Among these toxic compounds, urea can cause fatigue, nausea, vomiting and headache. The product of the decomposition of this material (cyanate) can lead to carbamylation of lipoproteins and peptides and adverse effects which, in turn, disturb several organs.

Key words: Renal failure, CKD, Review

INTRODUCTION:
Renal failure is the disability of the kidneys in the disposal of waste materials, causing the waste to discharge into the body and generating symptoms of variable intensity. Chronic kidney disease (CKD) is defined as progressive and irreversible impairment in renal function. The CKD spectrum varies from proteinuria to serum creatinine, which reflects a decrease in glomerular filtration rate (GFR) and ultimately a complete renal elimination, the final stage of renal disease (ESRD) (2). According to the Kidney Disease Alliance's Quality Initiative, the CKD (K / DOQI) is categorized according to GFR, regardless of the cause of the stage, from steps 1 to 5. In steps 1
Chronic Kidney Disease (CKD) is a progressive disease of kidney failure in a period of months to years. Renal failure refers to temporary or permanent kidney damage that results in the loss of normal kidney function (4). The National Cancer Institute of the United States of America has defined chronic renal disease as a kidney injury or glomerular filtration rate of less than 60 ml/min in a body surface area of 1.73 m² for three months or more (5).

Pathophysiology

Reduced function of some nephrons causes hypertrophy of other remaining nephrons. The plasma flow in one nephron and the pressure inside the glomeruli increases due to the vasodilatation of the aphrodisiacs (6). Hyperfiltration of residual glomeruli preserves GFR in the early stages; however, it later leads to glomerulosclerosis due to intra-thecal glomerular hypertension and glomerular hypertrubrium, resulting in a decrease in GFR and an increase in proteinuria, which ultimately leads to ESRD. The rate of kidney damage is determined by biopsy of the kidneys (7).

The remaining nephron should be modulated by increasing the filtration rate and secretion level, acid-base balance, water and soluble proteins in the urine.
materials. Patients with CKD, especially in stages 3 to 5, are prone to edema and excessive hypertension, hypercalemia, hyponatremia, and azotemia. During progressive kidney disease, sodium balance is maintained by increasing the secretion of sodium by nephrons (8). Acid excretion is maintained until the end of the CKD, when the GFR reaches less than 15 ml/min. Initially, an increased synthesis of ammonium tubules provides sufficient buffer for hydrogen in the distal nephron. Subsequently, a significant reduction in distal bicarbonate regeneration results in hypercalceric metabolic acidosis. A further decrease in the mass of the nephron causes the retention of organic ions, such as sulfates, which causes metabolic acidosis with an anionic cleft (9).

For decades, it has been thought that when GFR falls below a sensitive level, the CKD tends to advance towards the ESRD, regardless of the initial problem. This suggests that the loss of a significant number of nephrons promotes the greater loss of nephrons as a desirable cycle (10).

Detailed studies have identified a number of interconnected mechanisms that contribute to the progression of CKD, including glomerular hemodynamic responses to neuronal loss, peritonitis, and pro-inflammatory responses, tubular hypertrophy which are associated with increased energy consumption, and metabolic anoxia is associated with the production of oxygen-responsive metabolites (11). Oxygen inhibitor metabolites have been proposed as a mechanism for tubular injury and interstitial kidney tissue in animal models. Additionally, hyperlipidemia was thought to be involved in progressive renal disease through proliferation and mesangial sclerosis. The activation of renin-angiotensin-aldosterone (RAAS) and increased β-depleting factor (IGF-β) also play a critical role in progressing towards kidney fibrosis. Interventions that lower intraglomerular pressure, such as protein constraints and the use of angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), slow down the progression of renal disease and confirm the importance of glomerular and RASS hemodynamics in progressive renal disease (12).

Clinical symptons

Patients with CKD usually do not show symptoms until GFR decreases down to 15 ml/min. Uremia is a syndrome that affects each organ. Uremic syndrome is probably the result of a series of factors, including retention of molecules, major hormonal deficiencies and metabolic factors, more than the effect of a single uremic poison. Among these toxic compounds, urea can cause fatigue, nausea, vomiting and headache. The product of the decomposition of this material (cyanate) can lead to carbamylation of lipoproteins and peptides and adverse effects which, in turn, disturb several organs (13).

Guanidines, exogenous metabolites or endogenous products, increase in renal failure. These side effects can inhibit the activity of 2α-hydroxylase in the kidney, leading to the production of calcitriolacne and secondary hyperparathyroidism. High levels of parathyroid hormone are effective in various uremic symptoms, especially cardiomyopathies and metastatic clusterisation. B2-microglobulin accumulation in patients with ESRD is associated with neuropathy, carpal tunnel syndrome and amyloid infiltration (14).

References

