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Abstract 
The apparatus we used to test and refine our Bounded Rationality HMM answer to the BRAI. In 
particular, we looked at two simulation settings, each of which has its own quirks. To begin, we used 
Deep learning, a fully visible robotic mining simulation in which an agent must use a microscope to 
detect the mineral composition of a mine, and then gather those minerals in order to perform tasks. 
The microscope's accuracy degrades during operation (depending on the sort of test being 
conducted), but recovers over time when it is not in use. Second, we used a simulation for partly 
observable user preference elicitation dubbed User Rec, which is based on the work of Doshi and 
Roy (2008) and describes a scenario in which an intelligent user interface agent must ascertain a 
user's choice through interruptions that solicit data from the user. 
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Introduction 
Human activity recognition has recently 
advanced, opening up a wide variety of 
potential uses, including in smart homes, 
healthcare, and improved manufacturing. 
Activity recognition is crucial to society 
because it provides a record of people's actions 
that can be used by computers to keep tabs on 
them, evaluate them, and help them in their 
everyday lives. Video-based systems and 
sensor-based systems are the two primary types 
of human activity identification technology. 
Cameras in video-based systems are used for 
behavior recognition. In order to dead reckon a 
person's mobility data or register their activity 
tracks, sensor-based systems use sensors on the 
body or in the environment. Due to concerns 
about invasion of privacy, sensor-based systems 
have largely replaced the use of cameras in 
tracking our everyday activities. In addition, 
sensors make use of this pervasiveness. The 
widespread availability of smart devices and the 
Internet of Things has made it possible to put 
sensors in previously inaccessible places, such 
as in automobiles, walls, and even furniture. 

Everywhere we go, sensors record data about 
our movements without disturbing us. 
Human activity recognition is an area where 
machine learning techniques have been widely 
used in prior publications. Time-frequency 
transformation, statistical methods, and 
symbolic representation are only a few 
examples of the feature extraction techniques 
used extensively. However, the recovered 
characteristics are heuristic and the extraction 
process is carefully developed. There was a lack 
of systematic or universal feature extraction 
methods that could reliably capture unique 
aspects of human actions. In several fields, 
including computer vision, natural language 
processing, and voice processing, deep learning 
has recently seen striking success in modeling 
high-level abstractions from complex data. 
There has been an explosion of research into the 
application of deep learning to the problem of 
human activity identification since the 
publication of seminal papers such as. New 
efforts are being made to tackle these unique 
obstacles as deep learning continues to advance 
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in the field of human activity detection. 
Researchers are hesitant to embrace deep 
learning because of its rapid rise to prominence, 
rapid pace of invention, and lack of theoretical 
foundation. 
Literature Review 
Marwala, Tshilidzi. (2013).  We revisit an 
extension of the bounded rationality theory 
called flexibly-bounded rationality in this study. 
Making judgments using rational methods 
necessitates employing defective and partial 
knowledge in conjunction with an intelligent 
machine that, if it is a person, is inconsistent. In 
limited rationality, the choice is taken within the 
confines of these restrictions, despite the fact 
that the information to be employed is partial 
and imperfect and that the human brain is 
inconsistent. The notion of flexibly-bounded 
rationality makes use of AI to make better 
judgements and sophisticated information 
analysis tools like the correlation machine to fill 
in any gaps in knowledge. Therefore, the scope 
of rational thought is broadened by the use of 
flexibly-bounded rationality. This study 
introduces the idea of marginalization of 
irrationality in decision making to address the 
challenge of satisficing when irrationality is 
present, given that human decision making is 
inherently illogical. 
Gama, João. (2013). New information and 
communication technologies have resulted in a 
sea shift in how data is gathered and processed. 
The age of constrained rationality has arrived in 
data mining. In this paper, we explore how the 
data stream computational model's resource 
restrictions affect the development of learning 
algorithms. We provide an in-depth analysis of 
how stream mining algorithms function and 
outline potential avenues for further study, such 
as ubiquitous stream mining and self-adaptive 
models. 
Bettis, Richard et.al. (2018). The Turing 
Award in Computing was shared by Alan 
Newell and Herbert A. Simon for their seminal 
contributions to the field of Artificial 
Intelligence. In addition to his Peace Prize, 
Simon took home the Nobel Prize in Economics 
for his work on "bounded rationality." The same 
core heuristic, "search till a satisfactory solution 
is found," was used in both instances. We 

suggest that the field of behavioral strategy has 
a lot to gain from the study of computational 
complexity and AI. These areas of study may 
strengthen the theoretical underpinnings of 
constrained rationality and the need for and use 
of heuristics. Last but not least, it may be 
helpful to apply a notion of "organizational 
intractability" inspired by the metaphor of the 
Theory of Computational Complexity to figure 
out which analytical decision-making tools are 
really unworkable in real-world settings due to 
time and management attention limits. 
Russell, Stuart. (2016). AI's ultimate objective 
is to enable the development of, and insight 
into, human intellect. For this, we need a clear 
definition of intelligence that will enable the 
construction of reliable systems and broad 
conclusions over time. The idea of rational 
agency has been a frontrunner for this position 
for some time. This study, an updated version of 
one first published in 1997 (Russell, Artif Intell 
94:57-77), examines the line of thinking that 
eventually led to an alternative contender, 
limited optimality, that is more in line with our 
everyday understanding of intelligence. Some 
encouraging progress made in recent times is 
also discussed. 
Nobre, Farley et.al. (2019) This article 
discusses a novel and cohesive viewpoint that 
helps participants (particularly the new 
economic men) in the organization push the 
limits of their reasoning. This view has its roots 
in the literatures of fuzzy logic, limited 
rationality, and cognitive psychology, all of 
which emerged about the same time in the 
second half of the twentieth century. This idea 
is bolstered by an interview with Professor Lotfi 
A. Zadeh (the founder of fuzzy logic) conducted 
in 2012 at the University of California, 
Berkeley. The study's findings suggest that (a) 
fuzziness, rather than probability, is the type of 
uncertainty that most pervades decisions in 
organizations; (b) fuzzy logic goes beyond 
bounded rationality by supporting the latter with 
new mathematics to solve non-programmed and 
ill-structured problems of unknown probability 
distributions; and (c) bounded rationality and 
fuzzy logic are complementary to one another. 
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Bounded Rationality HMM Instantiation 
Each microscope in a Deep Learning 
environment is a stateful resource used for 
sensing, meaning its behavior is contingent on 
its current state (its energy level). This is 
because the usage of a microscope depletes its 
battery, resulting in less precise observations. 
Because of the inaccurate observations 
introduced by Bounded Rationality, an agent 
must weigh the importance of refining its 
knowledge to complete its present duties against 
the risk of compromising its knowledge. As 
indicated in Table 1, we model the decision-

making process for implementing sensing 
actions using a microscope as a Bounded 
Rationality HMM to account for this trade-off. 
To emphasize the importance of the constant 
prior u=1, we model the current state of 
knowledge as the number of preceding 
observations with a belief equal to b + d in 
equation (16). Finally, we use equation (16) to 
describe the value of knowledge refinement as 
the difference between the agent's initial and 
updated maximum expectations for the mineral 
type in each supply. 

 
Table 1: Deep learning Bounded Rationality HMM 

 
 
We take into account three RL methods to learn 
how to function in this Observation Selection 
HMM: The first is Q-Learning (Watkins, 1989), 
second is R-Max (Brafman and Tennen Holtz, 
2002), and third is REINFORCE (Williams, 
1992). These algorithms were selected not 
because we wanted to conduct a comprehensive 
analysis of cutting-edge RL methods, but 
because they reflect a variety of RL approaches 
and are either widely used or easy to understand 
or have unique qualities. 
Since Q-Learning and R Max have already been 
detailed in Sections 3.3.1 and 3.3.2, 
respectively, we will not repeat that information 
here. Conversely, REINFORCE (Williams, 
1992) is a family of model-free RL algorithms 
that employ neural networks to train both an 
action selection controller and the reward 
function. The agent learns two neural networks: 
1) a stochastic neural network that estimates the 
reward function based on the current state and 
the action taken, and 2) a neural network that 
approximates the reward function based on the 

current state and the action taken. The latter is 
taught using conventional supervised learning 
techniques, whereas the former is taught by 
adding reinforcement to the network's weights 
in proportion to the value of the reward for 
performing the desired action. To train the 
network using back propagation, we employ the 
following update function in our experiments 

 
Where a, , and are as defined 
previously (c.f., Section 3.3.1) and is the 
computed eligibility of weight updates 
(Williams, 1992). Of note, we reinforce using 

-  rather than just the recent 
as our learned gives the algorithm 

a starting point for rewards, reducing learning-
time variation. 
Q-Learning and R Max, two of the most 
popular model-free and model-based RL 
algorithms, are quite straightforward. Both of 
these methods, however, rely on discrete states, 
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which leads to the loss of some information 
when applied to the genuine sensing state. Since 
the energy state of the microscope is 
continuous, we discretize the data into bins 
spanning the range [0, 1] for use in deep 
learning. However, REINFORCE's neural 
network foundation means that we may 
preserve continuous values even while we learn. 
Human Activity Recognition: A User 
Preference Elicitation Simulation 

Environment Description 

Human activity recognition is the second 
simulated environment we utilize in our tests; it 
represents a user choice elicitation issue. Doshi 
and Roy (2008) suggested this simulation 
setting to test a novel PBVI-based approach for 
resolving the preference elicitation POHMM 
(Boutilier, 2002; Doshi and Roy, 2008). This 
part starts off by and then we add more to it to 
make it more like a model of the actual world 
by integrating things like user anger when 
things don't work out the way they're supposed 
to. 

 

Table 2 Deep learning Experiment Parameters 

 
 

 
Figure 1: Human-Agent Interaction in Human activity recognition 

 

Doshi and Roy’s World. A human user is 
supported by an intelligent agent in the initial 
setting presented by Doshi and Roy (2008). For 
an illustration of how an agent communicates 
with its human user, see Figure 1 below. An 
intelligent agent interacting with a human user 
must elicit the user's preference over a set of 
items (e.g., goods, scenarios, goals) in order to 
provide support to the user. The agent may use 
two sensory operations to achieve this goal: 

1. query, which asks the user to state their 
current preference, and 

2. confirm, whereby the agent asks the userif 
its belief about the user’s toppreference is 
correct. 
When the agent asks for confirmation of actions 
based on the user's real preferences, the user 
gives feedback in the form of observations that 
are utilized to update the agent's beliefs (i.e., 
knowledge) about the current user preference. 
Once the agent is certain it has grasped the 
user's choice, it may submit a third action to 
carry out the intelligent help the user has 
requested. A user's choice is elicited via a 
sequence of interactions, and each episode 
concludes with the submit button being clicked. 
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After a user clicks "submit," their preferences 
are cleared and a fresh episode is played. 

To more closely reflect the actual situation, the 
user's input is noisy in the sense that it contains 
a small but non-zero likelihood of being 
erroneous (according to a fixed probability for 
each of the two sensory activities indicated 
above, as given in Table 3). This noise causes 
the agent to be less confident of its beliefs, so it 
may execute a series of inquiry activities before 

committing to a confirm action. Also, 
throughout the course of a contact with the 
agent, there is a small chance (also shown in 
Table 3) that the user will change its choice. For 
this reason, it might be challenging for an agent 
seeking to model its user's desire to reconcile all 
replies in its beliefs about user preference, even 
if it first obtains a correct response from the 
user.

 

Table 3: Example Environment Parameters (Doshi and Roy, 2008) 

 
 

Table 4: Example Task-Level Reward Structure for Agent Actions (Doshi and Roy, 2008) 

 
 
In addition, there is a constant penalty (i.e., 
punishment) for any sensory actions done by an 
agent. Since the agent wants to submit the user's 
choice as accurately as possible, it will try to 
avoid executing unnecessary sensing activities 
if it already has enough information about the 
user's desire. Table 4 reproduces an example 
reward structure provided in to aid an agent in 
deciding whether to undertake an action and 
which actions to take. Because it requires more 
work from a user to respond over a set of 
preferences than to agree or disagree with the 
agent's top belief, the given reward structure 
penalizes an agent more when its confirm and 
submit actions are incorrect (i.e., the wrong 
preference is identified). 

Doshi and Roy (2008) take into account a 
POHMM model of the environment dubbed the 
Preference Elicitation PODMP (Boutilier, 
2002), which is detailed in Table 5, while 
designing agent behavior to address the 
preference elicitation issue in this environment. 
In this context, an agent is provided with a fully 
parameterized PODMP model of the 
environment (developed by an assumed domain 
expert) and then uses versions of the PBVI 
algorithm to choose which actions to take in 
light of its present belief state. Here, the agent's 
belief state is representative of its understanding 
of user preferences, as it quantifies the 
probability that the agent has correctly 
identified the user's true choice among all 
potential options. 
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Table 5: Preference Elicitation POHMM Model 

 
 
Our Extension: User Frustration. For a more 
realistic simulation of the environment's 
dynamics, we included user irritation that builds 
up across several elicitation episodes and is 
exacerbated by the agent's disruptions. As faulty 
behaviors reduce user confidence in the system 
and motivation to utilize the system, they also 
raise frustration when the agent wrongly acts on 
its ideas about user choice. As a result, she 
becomes more irritable, which in turn causes a 
disruption in her cognitive state, and she 
responds more rapidly because she feels rushed 
to make up for the time she missed because of 
the interruption. In contrast, when the agent 
delivers appropriate intelligent assistance based 
on true ideas about user desire, frustration and 
its side effects are reduced. 
There are no measurable mathematical models 
for computer user irritation that we could 

include into our implementation after searching 
the human-user interaction (HCI) literature and 
the research done by the intelligent user 
interface (IUI) community. To kick off our 
investigation, we recommend the following as a 
rough estimate of customer dissatisfaction. 
We represent user dissatisfaction as a 
cumulative effect, where agent actions either 
raise or reduce the user's frustration, to keep 
things simple while yet include user frustration 
inside our simulated program. We express a 
user's degree of annoyance as a number 
between zero and one hundred, with one 
hundred being the most extreme level of 
dissatisfaction. In particular, the cumulative 
effects of the negative outcomes of each agent's 
decisions contribute to the user's sense of 
exasperation. In Table 6, we illustrate one such 
value.

 
Table 6: Example Frustration Structure for Agent Actions 

 
 
What makes our add-on so intriguing is that the 
user's reaction time (she reacts quicker to get 
back to her task) and accuracy (she responds 
less correctly due to disturbed cognitive state) 
both fluctuate depending on her current 
annoyance level. In this work, we describe the 
evolution of the reaction time and the accuracy 
drop as being linearly related to the level of user 
annoyance at the moment.  In particular, the 

delay timer has a maximum setting by 

default. when the user is not 
experiencing any frustration, and is determined 
by subtracting the frustration multiplied by the 
frustration delay factor (FDP) from the previous 
maximum: 
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(Capped to provide an integer number of 
simulation ticks representing time), whereas the 
noise introduced by an increase in user irritation 
is determined by multiplying frustration by a 
frustration noise factor (FNF): 

 
Finally, we halt our simulations early (i.e., 
before all episodes are done) if the user reaches 
maximal frustration at the conclusion of a 
particular number of episodes in a row, since a 
human user cannot be expected to continue 
working when utterly irritated. This is the user's 
boiling point count, and it indicates how long 
they can remain frustrated at a level higher than 
their personal threshold (100% frustration). 
Conclusion 
The user's patience becomes thin, and her 
reaction speed and precision suffer as a result. 
As a result, the agent in both settings must solve 
the BRAI in order to make informed decisions 
about what sensing activities to engage in 
because the state of the resource (energy for the 
microscope and frustration for the user) 
influences the accuracy of the sensing 
outcomes. Our modeling of the Bounded 
Rationality HMM and the reinforcement 
learning techniques used to regulate agent 
sensing have been detailed for both simulations. 
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